User Tools

Site Tools


en:cobb-douglas-production-function

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revision Previous revision
Next revision
Previous revision
Last revision Both sides next revision
en:cobb-douglas-production-function [2015/10/13 13:40]
federico
en:cobb-douglas-production-function [2019/04/06 08:26]
federico
Line 1: Line 1:
 ====== Cobb-Douglas Production Function ====== ====== Cobb-Douglas Production Function ======
  
- +The Cobb-Douglas Production Function is a particular form of the [[:​en:​production-function|]].
-The Cobb-Douglas Production Function is a particular form of the [[Production Function]].+
  
 It takes the following form: It takes the following form:
  
-Q(L,K) = A L<​sup>​β</​sup>​K<​sup>​α</​sup>​+Q(L,K) = A L<​sup>​β</​sup> ​ K<​sup>​α</​sup>​
  
-  ​* L:labor+   * L:labor
   * K:capital   * K:capital
   * Q:output   * Q:output
Line 17: Line 16:
 The main characteristics of the Cobb-Douglas production function are: The main characteristics of the Cobb-Douglas production function are:
  
-  - The [[marginal product]] is positive and decreasing. +  - The [[:​en:​marginal-product|marginal product]] is positive and decreasing. 
-  - [[Output elasticity]] is constant, equal to α for L or β for K. +  - [[:​en:​cobb-douglas-output-elasticity|Output elasticity]] is constant, equal to α for L or β for K. 
-  - [[Return to scale]] are constant and equal to α+β+  - [[:​en:​return-to-scale|Return to scale]] are α+β
  
 Plot of a Cobb-Douglas production function: Plot of a Cobb-Douglas production function:
  
-{{:​en:​cobb-douglas-ew.jpg?​nolink|}}+{{:​en:​cobb-douglas-ew.jpg?​nolink&|cobb-douglas-ew.jpg}}{{ ​ :​en:​cobb-douglas-1.svg.png?​nolink&​}}
  
 ===== The marginal product is positive and decreasing ===== ===== The marginal product is positive and decreasing =====
Line 29: Line 28:
 This behavior is usually seen in a lot of real world examples. To find the marginal product of a production factor, we derivate the total output with respect that factor. For example, to find the marginal product of capital: This behavior is usually seen in a lot of real world examples. To find the marginal product of a production factor, we derivate the total output with respect that factor. For example, to find the marginal product of capital:
  
-∂Q / ∂K = +∂Q / ∂K =
  
-= α * (A L<​sup>​β</​sup>​) K<​sup>​(α-1)</​sup>​+= α * (A L<​sup>​β</​sup> ​  ​) K<​sup>​(α-1)</​sup>​
  
-Given that α is positive and lower than 1, the marginal product is positive and decreasing. ​+Given that α is positive and lower than 1, the marginal product is positive and decreasing.
  
 Graphically:​ Graphically:​
  
-{{:​es:​cobb-douglas-marginal.png?​nolink|}}+{{:​es:​cobb-douglas-marginal.png?​nolink&}} 
 + 
 +===== Output elasticity is constant ===== 
 + 
 +Output elasticity is defined as the percent change in output, when there is a percent change in one production factor. 
 + 
 +In the case of the Cobb-Douglas production function, output elasticity is constant. Output elasticity of labor is β and output elasticity of capital is α. 
 + 
 +==== Proof ==== 
 + 
 +By definition, output elasticity is: 
 + 
 +(∂Q/Q) / (∂L/L) = 
 + 
 += (∂Q/∂L) / (Q/L) That is the marginal product of labor divided the medium product of labor. 
 + 
 += [ Aβ L<​sup>​β-1</​sup> ​  ) K<​sup>​α</​sup> ​  ] / [ A L<​sup>​β</​sup> ​  ​K<​sup>​α</​sup> ​  / L ] 
 + 
 +Given that 1/L is L<​sup>​-1</​sup> ​  , AL<​sup>​β</​sup> ​  ​K<​sup>​α</​sup> ​  /L is AL<​sup>​β-1</​sup> ​  ​K<​sup>​α</​sup> ​  . It follows that output elasticity is: 
 + 
 += AβL<​sup>​β-1</​sup> ​  ​K<​sup>​α</​sup> ​  / AL<​sup>​β-1</​sup> ​  ​K<​sup>​α</​sup>​ 
 + 
 +The only difference between the numerator and the denominator is β; then: 
 + 
 +Output elasticity = AβL<​sup>​β-1</​sup> ​  ​K<​sup>​α</​sup> ​  / AL<​sup>​β-1</​sup> ​  ​K<​sup>​α</​sup> ​  = β 
 + 
 +===== Return to scale are α+β ===== 
 + 
 +Returns to scale measure the proportional change in output, given a proportional change in the quantity of every factor of production. 
 + 
 +==== Proof ==== 
 + 
 +If we increase every factor in a given constant c, the new output level will be: 
 + 
 +Q<​sup>'</​sup> ​  = A(cL)<​sup>​β</​sup> ​  ​(cK)<​sup>​α</​sup>​ 
 + 
 += Ac<​sup>​β</​sup> ​  ​L<​sup>​β</​sup> ​  ​c<​sup>​α</​sup> ​  ​K<​sup>​α</​sup>​ 
 + 
 += c<​sup>​β</​sup> ​  ​c<​sup>​α</​sup> ​  ​AL<​sup>​β</​sup> ​  ​K<​sup>​α</​sup>​ 
 + 
 += c<​sup>​β+α</​sup> ​  Q 
 + 
 +This means that if we increase every production factor by c, the output level will increase in c<​sup>​β+α</​sup> ​  . 
 + 
 +If β+α = 1, the output will increase in c. In this case, the Cobb-Douglas production function has constant return to scale. 
 + 
 +If β+α < 1, the proportional increase in output will be lower than the proportional increase in production factors. In this case, the Cobb-Douglas production function has decreasing returns to scale. 
 + 
 +If β+α > 1, the proportional increase in output will be higher than the proportional increase in production factors. In this case, the production function has increasing returns to scale. 
 + 
 +[[:​en:​cobb-douglas-output-elasticity|]]
  
  
en/cobb-douglas-production-function.txt · Last modified: 2019/04/06 08:27 by federico