User Tools

Site Tools


en:cobb-douglas-production-function

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revision Previous revision
Next revision
Previous revision
en:cobb-douglas-production-function [2015/10/13 13:40]
federico
en:cobb-douglas-production-function [2019/04/06 08:27] (current)
federico
Line 1: Line 1:
 ====== Cobb-Douglas Production Function ====== ====== Cobb-Douglas Production Function ======
  
- +The Cobb-Douglas Production Function is a particular form of the [[:​en:​production-function|]].
-The Cobb-Douglas Production Function is a particular form of the [[Production Function]].+
  
 It takes the following form: It takes the following form:
  
-Q(L,K) = A L<​sup>​β</​sup>​K<​sup>​α</​sup>​+Q(L,K) = A L<​sup>​β</​sup> ​ K<​sup>​α</​sup>​
  
-  ​* L:labor+   * L:labor
   * K:capital   * K:capital
   * Q:output   * Q:output
Line 15: Line 14:
   * 0<​β<​1   * 0<​β<​1
  
-The main characteristics ​of the Cobb-Douglas ​production function are:+======= Properties ​of Cobb Douglas ​Production Function ========
  
-  - The [[marginal product]] is positive and decreasing. +  - The [[:​en:​marginal-product|marginal product]] is positive and decreasing. 
-  - [[Output elasticity]] is constant, equal to α for L or β for K. +  - [[:​en:​cobb-douglas-output-elasticity|Output elasticity]] is constant, equal to α for L or β for K. 
-  - [[Return to scale]] are constant and equal to α+β+  - [[:​en:​return-to-scale|Return to scale]] are α+β
  
 Plot of a Cobb-Douglas production function: Plot of a Cobb-Douglas production function:
  
-{{:​en:​cobb-douglas-ew.jpg?​nolink|}}+{{:​en:​cobb-douglas-ew.jpg?​nolink&|cobb-douglas-ew.jpg}}{{ ​ :​en:​cobb-douglas-1.svg.png?​nolink&​}}
  
 ===== The marginal product is positive and decreasing ===== ===== The marginal product is positive and decreasing =====
Line 29: Line 28:
 This behavior is usually seen in a lot of real world examples. To find the marginal product of a production factor, we derivate the total output with respect that factor. For example, to find the marginal product of capital: This behavior is usually seen in a lot of real world examples. To find the marginal product of a production factor, we derivate the total output with respect that factor. For example, to find the marginal product of capital:
  
-∂Q / ∂K = +∂Q / ∂K =
  
-= α * (A L<​sup>​β</​sup>​) K<​sup>​(α-1)</​sup>​+= α * (A L<​sup>​β</​sup> ​  ​) K<​sup>​(α-1)</​sup>​
  
-Given that α is positive and lower than 1, the marginal product is positive and decreasing. ​+Given that α is positive and lower than 1, the marginal product is positive and decreasing.
  
 Graphically:​ Graphically:​
  
-{{:​es:​cobb-douglas-marginal.png?​nolink|}}+{{:​es:​cobb-douglas-marginal.png?​nolink&}} 
 + 
 +===== Output elasticity is constant ===== 
 + 
 +Output elasticity is defined as the percent change in output, when there is a percent change in one production factor. 
 + 
 +In the case of the Cobb-Douglas production function, output elasticity is constant. Output elasticity of labor is β and output elasticity of capital is α. 
 + 
 +==== Proof ==== 
 + 
 +By definition, output elasticity is: 
 + 
 +(∂Q/Q) / (∂L/L) = 
 + 
 += (∂Q/∂L) / (Q/L) That is the marginal product of labor divided the medium product of labor. 
 + 
 += [ Aβ L<​sup>​β-1</​sup> ​  ) K<​sup>​α</​sup> ​  ] / [ A L<​sup>​β</​sup> ​  ​K<​sup>​α</​sup> ​  / L ] 
 + 
 +Given that 1/L is L<​sup>​-1</​sup> ​  , AL<​sup>​β</​sup> ​  ​K<​sup>​α</​sup> ​  /L is AL<​sup>​β-1</​sup> ​  ​K<​sup>​α</​sup> ​  . It follows that output elasticity is: 
 + 
 += AβL<​sup>​β-1</​sup> ​  ​K<​sup>​α</​sup> ​  / AL<​sup>​β-1</​sup> ​  ​K<​sup>​α</​sup>​ 
 + 
 +The only difference between the numerator and the denominator is β; then: 
 + 
 +Output elasticity = AβL<​sup>​β-1</​sup> ​  ​K<​sup>​α</​sup> ​  / AL<​sup>​β-1</​sup> ​  ​K<​sup>​α</​sup> ​  = β 
 + 
 +===== Return to scale are α+β ===== 
 + 
 +Returns to scale measure the proportional change in output, given a proportional change in the quantity of every factor of production. 
 + 
 +==== Proof ==== 
 + 
 +If we increase every factor in a given constant c, the new output level will be: 
 + 
 +Q<​sup>'</​sup> ​  = A(cL)<​sup>​β</​sup> ​  ​(cK)<​sup>​α</​sup>​ 
 + 
 += Ac<​sup>​β</​sup> ​  ​L<​sup>​β</​sup> ​  ​c<​sup>​α</​sup> ​  ​K<​sup>​α</​sup>​ 
 + 
 += c<​sup>​β</​sup> ​  ​c<​sup>​α</​sup> ​  ​AL<​sup>​β</​sup> ​  ​K<​sup>​α</​sup>​ 
 + 
 += c<​sup>​β+α</​sup> ​  Q 
 + 
 +This means that if we increase every production factor by c, the output level will increase in c<​sup>​β+α</​sup> ​  . 
 + 
 +If β+α = 1, the output will increase in c. In this case, the Cobb-Douglas production function has constant return to scale. 
 + 
 +If β+α < 1, the proportional increase in output will be lower than the proportional increase in production factors. In this case, the Cobb-Douglas production function has decreasing returns to scale. 
 + 
 +If β+α > 1, the proportional increase in output will be higher than the proportional increase in production factors. In this case, the production function has increasing returns to scale. 
 + 
 +[[:​en:​cobb-douglas-output-elasticity|]]
  
  
en/cobb-douglas-production-function.1444758032.txt.gz · Last modified: 2015/10/13 13:40 by federico